Web Application Attacks Detection: A Survey and Classification

نویسندگان

  • Nadya Elbachir El Moussaid
  • Ahmed Toumanari
  • N. El Moussaid
  • A. Toumanari
  • M. Elazhari
  • M. Moorthy
  • S. Sathiyabama
  • M. Ektefa
  • S. Memar
  • F. Sidi
  • L. Suriani Affendy
چکیده

The number of attacks is increasing day by day, especially the web attacks due to the shift of the majority of companies towards web applications. Therefore, the security of their sensitive data against attackers becomes a crucial matter for all organization and companies. Thus the necessity to use intrusion detection systems are required in order to increases the protection and prevent attackers from exploiting these data in illegal way. In this paper we begin by giving a survey of web application attacks and vulnerabilities, also approaches to improve the web application security using intrusion detection systems and scanners based on machine learning and artificial intelligence. When it comes to vulnerability, it is also an attack which exploits this vulnerability; therefore our paper presents web intrusion detection system based on detection of web vulnerabilities. Experimental results have been acquired from HTTP simulations in our network and from responses of HTTP requests sent to a bunch of websites and applications to test the efficiency of our intrusion detection system. This efficiency can be noticed from a High detection rate which is greater than 90%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

A Survey of Anomaly Detection Approaches in Internet of Things

Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...

متن کامل

Analyzing new features of infected web content in detection of malicious web pages

Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...

متن کامل

HF-Blocker: Detection of Distributed Denial of Service Attacks Based On Botnets

Abstract—Today, botnets have become a serious threat to enterprise networks. By creation of network of bots, they launch several attacks, distributed denial of service attacks (DDoS) on networks is a sample of such attacks. Such attacks with the occupation of system resources, have proven to be an effective method of denying network services. Botnets that launch HTTP packet flood attacks agains...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014